Transformers documentation

AWQ

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.49.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

AWQ

Activation-aware Weight Quantization (AWQ) preserves a small fraction of the weights that are important for LLM performance to compress a model to 4-bits with minimal performance degradation.

There are several libraries for quantizing models with the AWQ algorithm, such as llm-awq, autoawq or optimum-intel. Transformers supports loading models quantized with the llm-awq and autoawq libraries. This guide will show you how to load models quantized with autoawq, but the process is similar for llm-awq quantized models.

Run the command below to install autoawq

pip install autoawq

AutoAWQ downgrades Transformers to version 4.47.1. If you want to do inference with AutoAWQ, you may need to reinstall your Transformers’ version after installing AutoAWQ.

Identify an AWQ-quantized model by checking the quant_method key in the models config.json file.

{
  "_name_or_path": "/workspace/process/huggingfaceh4_zephyr-7b-alpha/source",
  "architectures": [
    "MistralForCausalLM"
  ],
  ...
  ...
  ...
  "quantization_config": {
    "quant_method": "awq",
    "zero_point": true,
    "group_size": 128,
    "bits": 4,
    "version": "gemm"
  }
}

Load the AWQ-quantized model with from_pretrained(). This automatically sets the other weights to fp16 by default for performance reasons. Use the torch_dtype parameter to load these other weights in a different format.

If the model is loaded on the CPU, use the device_map parameter to move it to a GPU.

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained(
  "TheBloke/zephyr-7B-alpha-AWQ",
  torch_dtype=torch.float32,
  device_map="cuda:0"
)

Use attn_implementation to enable FlashAttention2 to further accelerate inference.

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
  "TheBloke/zephyr-7B-alpha-AWQ",
  attn_implementation="flash_attention_2",
  device_map="cuda:0"
)

Fused modules

Fused modules offer improved accuracy and performance. They are supported out-of-the-box for AWQ modules for Llama and Mistral architectures, but you can also fuse AWQ modules for unsupported architectures.

Fused modules cannot be combined with other optimization techniques such as FlashAttention2.

supported architectures
unsupported architectures

Create an AwqConfig and set the parameters fuse_max_seq_len and do_fuse=True to enable fused modules. The fuse_max_seq_len parameter is the total sequence length and it should include the context length and the expected generation length. Set it to a larger value to be safe.

The example below fuses the AWQ modules of the TheBloke/Mistral-7B-OpenOrca-AWQ model.

import torch
from transformers import AwqConfig, AutoModelForCausalLM

quantization_config = AwqConfig(
    bits=4,
    fuse_max_seq_len=512,
    do_fuse=True,
)
model = AutoModelForCausalLM.from_pretrained(
  "TheBloke/Mistral-7B-OpenOrca-AWQ",
  quantization_config=quantization_config
).to(0)

The TheBloke/Mistral-7B-OpenOrca-AWQ model was benchmarked with batch_size=1 with and without fused modules.

Unfused module
Batch Size Prefill Length Decode Length Prefill tokens/s Decode tokens/s Memory (VRAM)
1 32 32 60.0984 38.4537 4.50 GB (5.68%)
1 64 64 1333.67 31.6604 4.50 GB (5.68%)
1 128 128 2434.06 31.6272 4.50 GB (5.68%)
1 256 256 3072.26 38.1731 4.50 GB (5.68%)
1 512 512 3184.74 31.6819 4.59 GB (5.80%)
1 1024 1024 3148.18 36.8031 4.81 GB (6.07%)
1 2048 2048 2927.33 35.2676 5.73 GB (7.23%)
Fused module
Batch Size Prefill Length Decode Length Prefill tokens/s Decode tokens/s Memory (VRAM)
1 32 32 81.4899 80.2569 4.00 GB (5.05%)
1 64 64 1756.1 106.26 4.00 GB (5.05%)
1 128 128 2479.32 105.631 4.00 GB (5.06%)
1 256 256 1813.6 85.7485 4.01 GB (5.06%)
1 512 512 2848.9 97.701 4.11 GB (5.19%)
1 1024 1024 3044.35 87.7323 4.41 GB (5.57%)
1 2048 2048 2715.11 89.4709 5.57 GB (7.04%)

The speed and throughput of fused and unfused modules were also tested with the optimum-benchmark library.

generate throughput per batch size
forward peak memory/batch size
forward latency per batch size
generate throughput/batch size

ExLlamaV2

ExLlamaV2 kernels support faster prefill and decoding. Run the command below to install the latest version of autoawq with ExLlamaV2 support.

pip install git+https://github.com/casper-hansen/AutoAWQ.git

Set version="exllama" in AwqConfig to enable ExLlamaV2 kernels.

ExLlamaV2 is supported on AMD GPUs.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig

quantization_config = AwqConfig(version="exllama")

model = AutoModelForCausalLM.from_pretrained(
    "TheBloke/Mistral-7B-Instruct-v0.1-AWQ",
    quantization_config=quantization_config,
    device_map="auto",
)

CPU

Intel Extension for PyTorch (IPEX) is designed to enable performance optimizations on Intel hardware. Run the command below to install the latest version of autoawq with IPEX support.

pip install intel-extension-for-pytorch # for IPEX-GPU refer to https://intel.github.io/intel-extension-for-pytorch/xpu/2.5.10+xpu/ 
pip install git+https://github.com/casper-hansen/AutoAWQ.git

Set version="ipex" in AwqConfig to enable ExLlamaV2 kernels.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig

device = "cpu" # set to "xpu" for Intel GPU
quantization_config = AwqConfig(version="ipex")

model = AutoModelForCausalLM.from_pretrained(
    "TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ",
    quantization_config=quantization_config,
    device_map=device,
)

Resources

Run the AWQ demo notebook for more examples of how to quantize a model, push a quantized model to the Hub, and more.

< > Update on GitHub