text-generation-inference documentation
Gaudi Backend for Text Generation Inference
Gaudi Backend for Text Generation Inference
Overview
Text Generation Inference (TGI) has been optimized to run on Gaudi hardware via the Gaudi backend for TGI.
Supported Hardware
- Gaudi1: Available on AWS EC2 DL1 instances
- Gaudi2: Available on Intel Cloud
- Gaudi3: Available on Intel Cloud
Tutorial: Getting Started with TGI on Gaudi
Basic Usage
The easiest way to run TGI on Gaudi is to use the official Docker image:
model=meta-llama/Meta-Llama-3.1-8B-Instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
hf_token=YOUR_HF_ACCESS_TOKEN
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model
Once you see the connected
log, the server is ready to accept requests:
2024-05-22T19:31:48.302239Z INFO text_generation_router: router/src/main.rs:378: Connected
You can find your YOUR_HF_ACCESS_TOKEN
at https://huggingface.co./settings/tokens. This is necessary to access gated models like llama3.1.
Making Your First Request
You can send a request from a separate terminal:
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":32}}' \
-H 'Content-Type: application/json'
How-to Guides
How to Run Specific Models
The following models have been validated on Gaudi2:
Model | Model ID | BF16 | FP8 | ||
---|---|---|---|---|---|
Single Card | Multi-Card | Single Card | Multi-Card | ||
Llama2-7B | meta-llama/Llama-2-7b-chat-hf | ✔ | ✔ | ✔ | ✔ |
Llama2-70B | meta-llama/Llama-2-70b-chat-hf | ✔ | ✔ | ||
Llama3-8B | meta-llama/Meta-Llama-3.1-8B-Instruct | ✔ | ✔ | ✔ | ✔ |
Llama3-70B | meta-llama/Meta-Llama-3-70B-Instruct | ✔ | ✔ | ||
Llama3.1-8B | meta-llama/Meta-Llama-3.1-8B-Instruct | ✔ | ✔ | ✔ | ✔ |
Llama3.1-70B | meta-llama/Meta-Llama-3.1-70B-Instruct | ✔ | ✔ | ||
CodeLlama-13B | codellama/CodeLlama-13b-hf | ✔ | ✔ | ✔ | ✔ |
Mixtral-8x7B | mistralai/Mixtral-8x7B-Instruct-v0.1 | ✔ | ✔ | ✔ | ✔ |
Mistral-7B | mistralai/Mistral-7B-Instruct-v0.3 | ✔ | ✔ | ✔ | ✔ |
Falcon-180B | tiiuae/falcon-180B-chat | ✔ | ✔ | ||
Qwen2-72B | Qwen/Qwen2-72B-Instruct | ✔ | ✔ | ||
Starcoder2-3b | bigcode/starcoder2-3b | ✔ | ✔ | ✔ | |
Starcoder2-15b | bigcode/starcoder2-15b | ✔ | ✔ | ✔ | |
Starcoder | bigcode/starcoder | ✔ | ✔ | ✔ | ✔ |
Gemma-7b | google/gemma-7b-it | ✔ | ✔ | ✔ | ✔ |
Llava-v1.6-Mistral-7B | llava-hf/llava-v1.6-mistral-7b-hf | ✔ | ✔ | ✔ | ✔ |
To run any of these models:
model=MODEL_ID_THAT_YOU_WANT_TO_RUN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
hf_token=YOUR_ACCESS_TOKEN
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model
<text-generation-inference-launcher-arguments>
For the full list of service parameters, refer to the launcher-arguments page.
The validated docker commands can be found in the examples/docker_commands folder.
Note:
--runtime=habana --cap-add=sys_nice --ipc=host
is required to enable docker to use the Gaudi hardware (more details here).
How to Enable Multi-Card Inference (Sharding)
TGI-Gaudi supports sharding for multi-card inference, allowing you to distribute the load across multiple Gaudi cards.
For example, on a machine with 8 Gaudi cards, you can run:
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
tgi-gaudi \
--model-id $model --sharded true --num-shard 8
How to Use Different Precision Formats
BF16 Precision (Default)
By default, all models run with BF16 precision on Gaudi hardware.
FP8 Precision
TGI-Gaudi supports FP8 precision inference with Intel Neural Compressor (INC).
To run FP8 Inference:
- Measure statistics using Optimum Habana measurement script
- Run the model in TGI with QUANT_CONFIG setting - e.g.
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json
.
The following commmand example for FP8 inference is based on the assumption that measurement is done via the first step above.
Example for Llama3.1-70B on 8 cards with FP8 precision:
model=meta-llama/Meta-Llama-3.1-70B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
How to Run Vision-Language Models (VLMs)
Gaudi supports VLM inference.
Example for Llava-v1.6-Mistral-7B on 1 card:
Start the TGI server via the following command:
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4
You can then send a request to the server via the following command:
curl -N 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is this a picture of?\n\n","parameters":{"max_new_tokens":32}}' \
-H 'Content-Type: application/json'
Note: In Llava-v1.6-Mistral-7B, an image usually accounts for 2000 input tokens. For example, an image of size 512x512 is represented by 2800 tokens. Thus,
max-input-tokens
must be larger than the number of tokens associated with the image. Otherwise the image may be truncated. We setBASE_IMAGE_TOKENS=2048
as the default image token value. This is the minimum value ofmax-input-tokens
. You can override the environment variableBASE_IMAGE_TOKENS
to change this value. The warmup will generate graphs with input length fromBASE_IMAGE_TOKENS
tomax-input-tokens
. For Llava-v1.6-Mistral-7B, the value ofmax-batch-prefill-tokens
is 16384, which is calcualted as follows:prefill_batch_size
=max-batch-prefill-tokens
/max-input-tokens
.
How to Benchmark Performance
We recommend using the inference-benchmarker tool to benchmark performance on Gaudi hardware.
This benchmark tool simulates user requests and measures the performance of the model on realistic scenarios.
To run it on the same machine, you can do the following:
MODEL=meta-llama/Llama-3.1-8B-Instruct
HF_TOKEN=<your HF READ token>
# run a benchmark to evaluate the performance of the model for chat use case
# we mount results to the current directory
docker run \
--rm \
-it \
--net host \
-v $(pwd):/opt/inference-benchmarker/results \
-e "HF_TOKEN=$HF_TOKEN" \
ghcr.io/huggingface/inference-benchmarker:latest \
inference-benchmarker \
--tokenizer-name "$MODEL" \
--url http://localhost:8080 \
--profile chat
Please refer to the inference-benchmarker README for more details.
How to Profile Performance
To collect performance profiling, you need to set the following environment variables:
Name | Value(s) | Default | Description |
---|---|---|---|
PROF_WAITSTEP | integer | 0 | Control profile wait steps |
PROF_WARMUPSTEP | integer | 0 | Control profile warmup steps |
PROF_STEP | integer | 0 | Enable/disable profile, control profile active steps |
PROF_PATH | string | /tmp/hpu_profile | Define profile folder |
PROF_RANKS | string | 0 | Comma-separated list of ranks to profile |
PROF_RECORD_SHAPES | True/False | False | Control record_shapes option in the profiler |
To use these environment variables, add them to your docker run command with the -e flag. For example:
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
-e PROF_WAITSTEP=10 \
-e PROF_WARMUPSTEP=10 \
-e PROF_STEP=1 \
-e PROF_PATH=/tmp/hpu_profile \
-e PROF_RANKS=0 \
-e PROF_RECORD_SHAPES=True \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model
Explanation: Understanding TGI on Gaudi
The Warmup Process
To ensure optimal performance, warmup is performed at the beginning of each server run. This process creates queries with various input shapes based on provided parameters and runs basic TGI operations (prefill, decode, concatenate).
Note: Model warmup can take several minutes, especially for FP8 inference. For faster subsequent runs, refer to Disk Caching Eviction Policy.
Understanding Parameter Tuning
Sequence Length Parameters
--max-input-tokens
is the maximum possible input prompt length. Default value is4095
.--max-total-tokens
is the maximum possible total length of the sequence (input and output). Default value is4096
.
Batch Size Parameters
- For prefill operation, please set
--max-batch-prefill-tokens
asbs * max-input-tokens
, wherebs
is your expected maximum prefill batch size. - For decode operation, please set
--max-batch-size
asbs
, wherebs
is your expected maximum decode batch size. - Please note that batch size will be always padded to the nearest multiplication of
BATCH_BUCKET_SIZE
andPREFILL_BATCH_BUCKET_SIZE
.
Performance and Memory Parameters
PAD_SEQUENCE_TO_MULTIPLE_OF
determines sizes of input length buckets. Since warmup creates several graphs for each bucket, it’s important to adjust that value proportionally to input sequence length. Otherwise, some out of memory issues can be observed.ENABLE_HPU_GRAPH
enables HPU graphs usage, which is crucial for performance results. Recommended value to keep istrue
.
Sequence Length Parameters
--max-input-tokens
: Maximum possible input prompt length (default: 4095)--max-total-tokens
: Maximum possible total sequence length (input + output) (default: 4096)
Batch Size Parameters
--max-batch-prefill-tokens
: Set asbs * max-input-tokens
wherebs
is your expected maximum prefill batch size--max-batch-size
: Set asbs
wherebs
is your expected maximum decode batch size- Note: Batch sizes are padded to the nearest multiple of
BATCH_BUCKET_SIZE
andPREFILL_BATCH_BUCKET_SIZE
Reference
This section contains reference information about the Gaudi backend.
Environment Variables
The following table contains the environment variables that can be used to configure the Gaudi backend:
Name | Value(s) | Default | Description | Usage |
---|---|---|---|---|
ENABLE_HPU_GRAPH | True/False | True | Enable hpu graph or not | add -e in docker run command |
LIMIT_HPU_GRAPH | True/False | True | Skip HPU graph usage for prefill to save memory, set to True for large sequence/decoding lengths(e.g. 300/212) | add -e in docker run command |
BATCH_BUCKET_SIZE | integer | 8 | Batch size for decode operation will be rounded to the nearest multiple of this number. This limits the number of cached graphs | add -e in docker run command |
PREFILL_BATCH_BUCKET_SIZE | integer | 4 | Batch size for prefill operation will be rounded to the nearest multiple of this number. This limits the number of cached graphs | add -e in docker run command |
PAD_SEQUENCE_TO_MULTIPLE_OF | integer | 128 | For prefill operation, sequences will be padded to a multiple of provided value. | add -e in docker run command |
SKIP_TOKENIZER_IN_TGI | True/False | False | Skip tokenizer for input/output processing | add -e in docker run command |
WARMUP_ENABLED | True/False | True | Enable warmup during server initialization to recompile all graphs. This can increase TGI setup time. | add -e in docker run command |
QUEUE_THRESHOLD_MS | integer | 120 | Controls the threshold beyond which the request are considered overdue and handled with priority. Shorter requests are prioritized otherwise. | add -e in docker run command |
USE_FLASH_ATTENTION | True/False | True | Whether to enable Habana Flash Attention, provided that the model supports it. Please refer to https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_PyTorch_Models.html?highlight=fusedsdpa#using-fused-scaled-dot-product-attention-fusedsdpa | add -e in docker run command |
FLASH_ATTENTION_RECOMPUTE | True/False | True | Whether to enable Habana Flash Attention in recompute mode on first token generation. | add -e in docker run command |
Contributing
Contributions to the TGI-Gaudi project are welcome. Please refer to the contributing guide.
Building the Docker Image from Source
To build the Docker image from source:
make -C backends/gaudi image
This builds the image and saves it as tgi-gaudi
. You can then run TGI-Gaudi with this image:
model=meta-llama/Meta-Llama-3.1-8B-Instruct
volume=$PWD/data
hf_token=YOUR_ACCESS_TOKEN
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
tgi-gaudi \
--model-id $model
For more details, see the README of the Gaudi backend and the Makefile of the Gaudi backend.
< > Update on GitHub